Reccivcd: August 8, 1988; accepted: September 7, 1988

REACTIONS OF BrF₅ WITH THE AZIDE, NITRITE AND SULFATE ANIONS
—

KARL 0. CHRISTE', WILLIAM W. WILSON and CARL J. SCHACK

Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91303 (U.S.A)

SUMMARY

Bromine pentafluoride undergoes a facile fluorine-oxygen exchange reaction with the sulfate anion to yield an equimolar mixture of BF_4O^- and SO_3F^- salts. With CSN_3 it ignites producing N_2 and a mixture of CsBrF₄ and CsBrF₆. With an excess of NaNO₂ it forms NaF, Br_2 , and FNO₂. When BrF₅ is used in excess with KNO₂ its reduction is halted at the BrF₃ stage producing $KBrF_4$ and FNO_2 as the primary products. The FNO_2 can undergo a secondary reaction with KNO₂ to give N₂O₄ and KF which react further to FNO and KNO₃. The latter and excess BrF₅ yield some KBrF₄O and FNO₂.

INTRODUCTION

The NF₄⁺ and CIF₆⁺ cations possess surprising kinetic stability and by metathesis in suitable solvents can be coupled with a variety of anions [1,2]. Since one of the best solvents for this purpose is BrF₅, its compatibility with the N₃⁻, NO₂⁻, and SO₄²⁻ anions was studied. Although these anions were found to be unstable in Brf_S , the observed reactions are interesting and are reported in this paper.

EXPERIMENTAL

Apparatus and Materials. The vacuum lines, handling techniques and spectrometers used in this study have been described elsewhere [3]. The BrF₅ (Matheson) was treated with 35 atm

0022-l 139/89/\$3.50 0 Elsevier Sequoia/Printed in The Netherlands

of $F₂$ at 100°C for 24 hours in the presence of NaF and then purified by fractional condensation through traps kept at -64" and -95°C with the material retained at -95°C being used. The KNO₂ (J.T. Baker, 99.0%) and NaNO₂ (J.T. Baker, 98.0%) were dried in vacuo at 120 $^{\circ}$ C for one day prior to their use. The Cs₂SO₄ was prepared from Cs₂CO₃ and H₂SO₄ and dried in vacuo at 200°C for one day. The CsN_x (Eastman Kodak) was used as received.

Reaction of Cs₂SO₄ with BrFs, A mixture of Cs₂SO₄ (1.30 mmol) and BrF₅ (106.4 mmol) in a 3/4" o.d. Teflon ampule was kept at 25°C for one hour. The material volatile at 25°C was pumped off and consisted of 105.1 mmol of BrF₅. The white solid residue (698.4 mg, weight calcd for 1.30 mmol of CsBrF₄O and 1.30 mmol of CsSO₃F = 698.2 mg) was identified by infrared and Raman spectroscopy as a mixture of $CsBrF₄O$ and $CsSO₃F$.

Reaction of CsN₃ with BrF₅, When a mixture of CsN₃ and a fivefold excess of BrF₅ in a Teflon-FEP ampule was warmed from -196°C towards ambient temperature, the mixture ignited on melting of the BrF₅ and burned with a bright red flame breaching the container. To achieve better temperature control, the experiment was repeated in a 95 ml Monet cylinder. CsN₃ (2.41 mmol) was added to the cylinder in the drybox, and BrF₅ (12.36) mmol) was added at -196°C on the vacuum line. The cylinder was allowed to slowly warm to room temperature and then cooled back again to -196°C. The gas noncondensible at -196° $(N_2, 3.65 \text{ mmol})$ was pumped off, and the excess of unreacted BrF₅ (9.98 mmol) was removed at 25°C. The white solid residue (730 mg, weight calcd for 1.20 mmol each of CSBrF₄ and CSBrF₆ = 739 mg) was shown by Raman and infrared spectroscopy to be an about equimolar mixture of CsBrF₄ and CsBrF₆.

Reaction of BrF_s with an Excess of NaNO₂, To a prepassivated 30 ml stainless steel cylinder that contained NaNO₂ (10.3 mmol), BrF₅ (2.54 mmol) was added at -196°C. The cylinder was allowed to warm to room temperature where it was kept for two hours. The material volatile at 25°C was separated by fractional condensation through -142°C and -196°C traps. The -142° trap contained Br₂ (1.27 mmol), and the one at -196° had FNO₂ (5.33 mmol, corresponding to an 84% yield based on $BFF₅$). The white solid residue was shown to be a mixture of NaF and unreacted NaNO₂.

Reaction of $KNQ₂$ with an Excess of BrF₅. A mixture of $KNQ₂$ (2.55 mmol) and BrF₅ (12.06 mmol) in a 30 ml stainless steel cylinder was kept at 25°C for four hours. Then, the cylinder was cooled to -196°C and shown to contain no material noncondensible at this temperature. The material volatile at 25°C was pumped off and separated by fractional condensation. It consisted of $FNO₂$, FNO and $BrF₅$. The light yellow-orange residue (290 mg) was identified by spectroscopic methods as a mixture of $KBrF_4$, KNO_3 , $KBrF_4O$ and KF.

RESULTS AND DISCUSSION

At room temperature $Cs₂SO₄$ readily undergoes the following quantitative reaction with BrF $_5$.

 $CS_2SO_4 + BrF_5 \rightarrow CsBrF_4O + CsSO_3F$

Even in the presence of a large excess of BrF₅, a further fluorine-oxygen exchange to a second mole of CsBrF₄O and SO_2F_2 does not take place. Although the above reaction is quantitative, it is not as useful as that of $CSNO₃$ with BrF_S [4] for the preparation of pure CsBrF₄O because of the difficulty of separating CsBrF₄O from CsSO₃F.

The reaction of CsN₃ with an excess of BrF₅ is quite violent and, unless carefully controlled, results in ignition upon melting of the BrF₅. With careful temperature control, the following quantitative reaction is observed:

 $2CSN₃ + BrF₅ \rightarrow 2CsF + 3N₂ + BrF₃$

The CsF product reacts with the BrF₃ and excess of BrF₅ to give CsBrF₄ [5] and CsBrF₆ [6], respectively:

 $CsF + BrF₃ \rightarrow CsBrF₄$ and $\textsf{CsF} + \textsf{BrF}_5 \rightarrow \textsf{CsBrF}_6$

Since BrF₃ is a stronger Lewis Acid than BrF₅ [7], all of the BrF₃ reacts with half of the CsF available leaving the other half for complexing with excess Br_{5} . The reaction of CsN₃ with BrF₅ can, therefore, be regarded as a redox reaction in which N₃⁻ is oxidized to N₂ and BrF₅ is reduced to BrF_3 .

The products observed for the reaction of BrF₅ with $NO₂$ ⁻ depend on which reagent is used in excess. As with the N₃⁻ anion, the NO₂⁻ anion acts as a reducing agent toward BrF₅. If an excess of NO₂⁻ is used, BrF₅ is reduced all the way to Br₂ as shown by the following equation:

 5 NaNO₂ + 2BrF₅ \rightarrow 5NaF + Br₂ + 5FNO₂

This reaction has potential as a relatively simple, high yield synthesis for $FNO₂$.

If an excess of BrF₅ is used, the reaction products are KBrF₄, KNO₃, KBrF₄O, KF, FNO, and FN02. These products are best rationalized by the following reaction sequence in which not all of the steps may go to completion:

 $KNO₂ + BrF₅ \rightarrow KBrF₄ + FNO₂$ $KNO₂ + FNO₂ \rightarrow KF + N₂O₄$ $KF + N₂O₄ \rightarrow KNO₃ + FNO$ $KNO_x + BrF₅ \rightarrow KNO_x + FNO₂$

Of these reactions, the third one involving KF + N_2O_4 and the last one involving KNO₃ + BrF₅ have previously been demonstrated [8,4] in separate experiments.

In summary, BrFs is not only capable of undergoing smooth fluorine-oxygen exchange reactions, as for example with $NO₃^-$ [4], $SO₄²⁻$, Br $O₃^-$ [9], Br $O₄^-$ [10], or $IO₄^-$ [11], but also can act as an oxidative fluorinator toward anions of lower oxidizing power such as N_3 or $NO₂$.

ACKNOWLEDGEMENT

The authors wish to thank Mr. RD. Wilson for his help and to the Office of Naval Research and the U.S. Army Research Office for financial support.

REFERENCES

- 1 For a recent review of NF₄⁺ chemistry, see I.V. Nikitin and V.Ya. Rosolovskii, Russ. Chem. Rev., 54, (1985) 426.
- 2 K.O. Christe and W.W. Wilson, Inorg. Chem., 22, (1983) 1950.
- 3 K.O. Christe and W.W. Wilson, Inorg. Chem., 22. (1988) 1296.
- 4 K.O. Christe and W.W. Wilson, Inorg. Chem., 26, (1987) 916.
- 5 K.O. Christe and C.J. Schack, Inorg. Chem., 9, (1970) 1852.
- 6 G. Tantot and R. Bougon, C.R. Seances Acad. Sci., Ser. C, 281, (1975) 271.
- 7 K.O. Christe, C.J. Schack, and D. Pilipovich, Inorg. Chem., 11, (1972) 2205.
- 8 C.T. Ratcliffe and J.M. Shreeve, J.C.S. Chem. Commun., (1966) 674.
- 9 R. Bougon, T. Bui Huy, P. Charpin, and G. Tantot, C.R. Seances Acad. Sci., Ser. C, 283 (1976) 71.
- 10 K.O. Christe, R.D. Wilson, E.C. Curtis, W. Kuhlmann. and W. Sawodny, Inorg. Chem. U. (1978) 533.
- 11 K.O. Christe, R.D. Wilson, and C.J. Schack, Inorg. Chem., 20, (1981) 2104.