Received: August 8, 1988; accepted: September 7, 1988

REACTIONS OF BrF5 WITH THE AZIDE, NITRITE AND SULFATE ANIONS

KARL O. CHRISTE*, WILLIAM W. WILSON and CARL J. SCHACK

Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91303 (U.S.A)

SUMMARY

Bromine pentafluoride undergoes a facile fluorine-oxygen exchange reaction with the sulfate anion to yield an equimolar mixture of BrF_4O^- and SO_3F^- salts. With CsN_3 it ignites producing N₂ and a mixture of $CsBrF_4$ and $CsBrF_6$. With an excess of $NaNO_2$ it forms NaF, Br_2 , and FNO_2 . When BrF_5 is used in excess with KNO_2 its reduction is halted at the BrF_3 stage producing KBrF₄ and FNO₂ as the primary products. The FNO_2 can undergo a secondary reaction with KNO_2 to give N_2O_4 and KF which react further to FNO and KNO_3 . The latter and excess BrF_5 yield some KBrF₄O and FNO₂.

INTRODUCTION

The NF₄⁺ and ClF₆⁺ cations possess surprising kinetic stability and by metathesis in suitable solvents can be coupled with a variety of anions [1,2]. Since one of the best solvents for this purpose is BrF₅, its compatibility with the N₃⁻, NO₂⁻, and SO₄²⁻ anions was studied. Although these anions were found to be unstable in BrF₅, the observed reactions are interesting and are reported in this paper.

EXPERIMENTAL

<u>Apparatus and Materials.</u> The vacuum lines, handling techniques and spectrometers used in this study have been described elsewhere [3]. The BrF_5 (Matheson) was treated with 35 atm

0022-1139/89/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

of F₂ at 100°C for 24 hours in the presence of NaF and then purified by fractional condensation through traps kept at -64° and -95°C, with the material retained at -95°C being used. The KNO₂ (J.T. Baker, 99.0%) and NaNO₂ (J.T. Baker, 98.0%) were dried in vacuo at 120°C for one day prior to their use. The Cs₂SO₄ was prepared from Cs₂CO₃ and H₂SO₄ and dried in vacuo at 200°C for one day. The CsN₃ (Eastman Kodak) was used as received.

<u>Reaction of Cs₂SO₄ with BrE₅.</u> A mixture of Cs₂SO₄ (1.30 mmol) and BrF₅ (106.4 mmol) in a 3/4" o.d. Teflon ampule was kept at 25°C for one hour. The material volatile at 25°C was pumped off and consisted of 105.1 mmol of BrF₅. The white solid residue (698.4 mg, weight calcd for 1.30 mmol of CsBrF₄O and 1.30 mmol of CsSO₃F = 698.2 mg) was identified by infrared and Raman spectroscopy as a mixture of CsBrF₄O and CsSO₃F.

<u>Reaction of CsN₃ with BrF₅</u>. When a mixture of CsN₃ and a fivefold excess of BrF₅ in a Teflon-FEP ampule was warmed from -196°C towards ambient temperature, the mixture ignited on melting of the BrF₅ and burned with a bright red flame breaching the container. To achieve better temperature control, the experiment was repeated in a 95 ml Monel cylinder. CsN₃ (2.41 mmol) was added to the cylinder in the drybox, and BrF₅ (12.36 mmol) was added at -196°C on the vacuum line. The cylinder was allowed to slowly warm to room temperature and then cooled back again to -196°C. The gas noncondensible at -196° (N₂, 3.65 mmol) was pumped off, and the excess of unreacted BrF₅ (9.98 mmol) was removed at 25°C. The white solid residue (730 mg, weight calcd for 1.20 mmol each of CsBrF₄ and CsBrF₆ = 739 mg) was shown by Raman and infrared spectroscopy to be an about equimolar mixture of CsBrF₄ and CsBrF₆.

Reaction of BrF₅ with an Excess of NaNO₂. To a prepassivated 30 ml stainless steel cylinder that contained NaNO₂ (10.3 mmol), BrF₅ (2.54 mmol) was added at -196°C. The cylinder was allowed to warm to room temperature where it was kept for two hours. The material volatile at 25°C was separated by fractional condensation through -142°C and -196°C traps. The -142° trap contained Br₂ (1.27 mmol), and the one at -196° had FNO₂ (5.33 mmol, corresponding to an 84% yield based on BrF₅). The white solid residue was shown to be a mixture of NaF and unreacted NaNO₂.

<u>Reaction of KNO₂ with an Excess of BrF₅</u> A mixture of KNO₂ (2.55 mmol) and BrF₅ (12.06 mmol) in a 30 ml stainless steel cylinder was kept at 25°C for four hours. Then, the cylinder was cooled to -196°C and shown to contain no material noncondensible at this temperature. The material volatile at 25°C was pumped off and separated by fractional condensation. It consisted of FNO₂, FNO and BrF₅. The light yellow-orange residue (290 mg) was identified by spectroscopic methods as a mixture of KBrF₄, KNO₃, KBrF₄O and KF.

RESULTS AND DISCUSSION

At room temperature Cs₂SO₄ readily undergoes the following quantitative reaction with BrF₅.

 $Cs_2SO_4 + BrF_5 \rightarrow CsBrF_4O + CsSO_3F$

Even in the presence of a large excess of BrF_5 , a further fluorine-oxygen exchange to a second mole of $CsBrF_4O$ and SO_2F_2 does not take place. Although the above reaction is quantitative, it is not as useful as that of $CsNO_3$ with BrF_5 [4] for the preparation of pure $CsBrF_4O$ because of the difficulty of separating $CsBrF_4O$ from $CsSO_3F$.

The reaction of CsN_3 with an excess of BrF_5 is quite violent and, unless carefully controlled, results in ignition upon melting of the BrF_5 . With careful temperature control, the following quantitative reaction is observed:

 $2CsN_3 + BrF_5 \rightarrow 2CsF + 3N_2 + BrF_3$

The CsF product reacts with the BrF_3 and excess of BrF_5 to give $CsBrF_4$ [5] and $CsBrF_6$ [6], respectively:

 $\begin{array}{l} \mbox{CsF + BrF_3} \rightarrow \mbox{CsBrF_4} \\ \mbox{and} \\ \mbox{CsF + BrF_5} \rightarrow \mbox{CsBrF_6} \end{array}$

Since BrF_3 is a stronger Lewis Acid than BrF_5 [7], all of the BrF_3 reacts with half of the CsF available leaving the other half for complexing with excess BrF_5 . The reaction of CsN₃ with BrF_5 can, therefore, be regarded as a redox reaction in which N₃⁻ is oxidized to N₂ and BrF_5 is reduced to BrF_3 .

The products observed for the reaction of BrF_5 with NO_2^- depend on which reagent is used in excess. As with the N_3^- anion, the NO_2^- anion acts as a reducing agent toward BrF_5 . If an excess of NO_2^- is used, BrF_5 is reduced all the way to Br_2 as shown by the following equation:

 $5NaNO_2 + 2BrF_5 \rightarrow 5NaF + Br_2 + 5FNO_2$

This reaction has potential as a relatively simple, high yield synthesis for FNO2.

If an excess of BrF_5 is used, the reaction products are $KBrF_4$, KNO_3 , $KBrF_4O$, KF, FNO, and FNO_2 . These products are best rationalized by the following reaction sequence in which not all of the steps may go to completion:

$$\begin{split} \mathsf{KNO}_2 + \mathsf{BrF}_5 \to \mathsf{KBrF}_4 + \mathsf{FNO}_2 \\ \mathsf{KNO}_2 + \mathsf{FNO}_2 \to \mathsf{KF} + \mathsf{N}_2\mathsf{O}_4 \\ \mathsf{KF} + \mathsf{N}_2\mathsf{O}_4 \to \mathsf{KNO}_3 + \mathsf{FNO} \\ \mathsf{KNO}_3 + \mathsf{BrF}_5 \to \mathsf{KNO}_3 + \mathsf{FNO}_2 \end{split}$$

Of these reactions, the third one involving $KF + N_2O_4$ and the last one involving $KNO_3 + BrF_5$ have previously been demonstrated [8,4] in separate experiments.

In summary, BrF_5 is not only capable of undergoing smooth fluorine-oxygen exchange reactions, as for example with NO₃⁻ [4], SO_4^{2-} , BrO_3^{-} [9], BrO_4^{-} [10], or IO_4^{-} [11], but also can act as an oxidative fluorinator toward anions of lower oxidizing power such as N₃⁻ or NO₂⁻.

ACKNOWLEDGEMENT

The authors wish to thank Mr. R.D. Wilson for his help and to the Office of Naval Research and the U.S. Army Research Office for financial support.

REFERENCES

- For a recent review of NF₄⁺ chemistry, see I.V. Nikitin and V.Ya. Rosolovskii, Russ. Chem. Rev., <u>54</u>, (1985) 426.
- 2 K.O. Christe and W.W. Wilson, Inorg. Chem., 22, (1983) 1950.
- 3 K.O. Christe and W.W. Wilson, Inorg. Chem., <u>27</u>, (1988) 1296.
- 4 K.O. Christe and W.W. Wilson, Inorg. Chem., <u>26</u>, (1987) 916.
- 5 K.O. Christe and C.J. Schack, Inorg. Chem., <u>9</u>, (1970) 1852.
- G. Tantot and R. Bougon, C.R. Seances Acad. Sci., Ser. C, 281, (1975) 271.
- 7 K.O. Christe, C.J. Schack, and D. Pilipovich, Inorg. Chem., 11, (1972) 2205.
- 8 C.T. Ratcliffe and J.M. Shreeve, J.C.S. Chem. Commun., (1966) 674.
- 9 R. Bougon, T. Bui Huy, P. Charpin, and G. Tantot, C.R. Seances Acad. Sci., Ser. C, <u>283</u> (1976) 71.
- K.O. Christe, R.D. Wilson, E.C. Curtis, W. Kuhlmann, and W. Sawodny, Inorg. Chem. <u>17</u>, (1978) 533.
- 11 K.O. Christe, R.D. Wilson, and C.J. Schack, Inorg. Chem., <u>20</u>, (1981) 2104.